1. 數學知識樹怎麼做
數學的知識樹要求有所有應該掌握的知識點,知識點不要求有多詳細,但是重要公式、重要知識點必須標明並說明。知識樹很好建立的 樓主加油 嘿嘿嘿
2. 如何製作數學知識樹
小學數學教學知識樹通常含:(1)數與代數(2)空間圖形(3)統計概率(4)實踐與綜合運用
這四大塊再具體到哪幾個單元,什麼專題。這就是整冊教材的知識樹。
3. 初一有理數的知識樹圖
4. 六年級數學知識樹
數學的知識框架,就是你們這一年的數學書里主要分為幾個模塊,這是主幹(根據內容決定),比如說你們的目錄(有主目錄,次目錄)就是一種框架,可以做參考
比如:六年級有2本書,你可以先寫第一本書,書里有12345678個章節(我也不知道有幾個章節,那幾個有聯系,這是打個比方,作為模板),每個章節講得都是不同的內容,1章一般是總論,而23章中講得聯系比較大,45章節有聯系,67也有聯系,你就把他們之間的聯系找出來,歸納一類,而後,歸納這個章節的知識點,從主要概括到最後具體的內容解釋,這樣就完成了
例子:
六年級數學
/ \
/ \
上冊 下冊
/ ! \
分別是 -- 23 45 67章的概要
知識點-- / ! \
(這是豎著畫的,因為是是知識樹嘛!我們現在習慣話橫著的,就是總的在左邊,然後從上到下豎著分,都一樣,習慣而已)
可以依次向下分,我就是舉個例子,具體怎麼樣,你可以參考你們的課本目錄,而且照我的說法你的工作量會很大,這個你也可以簡略寫,不用分的那麼細 ,因為我們做知識框架的目的就是為了方便記憶,使看的容易一些,讓那個繁瑣的知識點聯系起來,有條理一些罷了,所以,這也是因人而異的
希望對你有所幫助!!
5. 用知識樹梳理數學知識有什麼好處
小學到初中是一次轉變,同樣的初中到高中又是一次。每一個階段,都會有自己的想法,有一些人到高中一下就開竅了,一下就悟出了自己的幼稚,成績就上去了。當然,你也不用壓抑,放輕松,高中有非常重要的高考,太緊張是不能考好的。其實學習從一開始一直到大學畢業都遵循一個原則,就是,好好上課聽講,按時有序復習,輕輕鬆鬆迎考。把自己的全身心投入到學習裡面去,不時問問自己是不是喜歡學,想學,肯學,是不是認真在學。成績不是最重要的,是一個過程。當然可能我這樣說沒有意義,但我還是建議你以一種放鬆的心態去學習,會有變化的。
楓邪逸很高興為您解答!
6. 初二數學知識樹
請把初二數學知識點歸納出來問題補充:初二數學(下)知識點歸納 (一)運用公式法: 我們知道整式乘法與因式分解互為逆變形。如果把乘法公式反過來就是
7. 將小學學的一至五年級的數學繪製成「知識樹」或形成網路表 急!!!!!
這種東西是要自己畫的…知識樹也就是思維導圖,其內容之間的聯系,每一塊的文字說明都不固定,肯定是一萬個人畫就能畫出一萬種。也就是說別人畫的你拿了也看不懂。
8. 北師大二年級上冊數學知識樹怎麼畫
考點:一次函數,通過函數圖像獲取信息,發展形象思維、了解兩個條件確定一個一次函數,能由兩個條件求出一些簡單的一次函數表達式,並解決有關問題、能熟練地作出一次函數的圖像,領會方程與圖像的關系、明確一次函數和正比例函數的表達式。
難點:實數,
了解數的算數平方根、平方根的概念,會用根號表示一個數的算數平方根和平方根、了解開平方與平方是互逆的,會利用這個互逆運算關系求某些非負數的算數平方根和平方根、要注意平方根和算術平方根的區別與聯系,區別是:正數的平方根有兩個,而算數平方根只有一個。聯系是:在於正數的正的平方根就是它的算數平方根,而負的平方根是它的算數平方根的相反數,因此,可根據它的算數平方根立即寫出它的平方根、會用計算器求平方根和立方根、了解實數的意義。
重點:二元一次方程組和四邊形性質的探索。
二元一次方程組:了解二元一次方程組、並會判斷一組數是不是某個二元一次方程組的解,會用代入消元法和加減消元法解二元一次方程組、會根據題意列出相應的二元一次方程組,並解、了解二元一次方程組與函數之間的關系。
四邊形性質的探索:1.利用平行四邊形的性質,可以求角的度數、線段的長度,也可以證明角相等、線段相等、線段平分等問題。
2.
探索並掌握平行四邊形的判別條件。
要判別一個四邊形是菱形,一般先判別這個四邊形是
平行四邊形,然後在判別一組鄰邊相等或對角線互相垂直。
3.梯形與矩形也是根據定義所判斷
4.之後會判斷多邊形的內角和與外角和。4.會畫中心對稱圖形,旋轉或平移以後。
我也只能總結到這了,其他還需你努力啊!!!
9. 初一數學各章內容的知識樹
過兩點有且只有一條直線
2 兩點之間線段最短
3 同角或等角的補角相等
4 同角或等角的餘角相等
5 過一點有且只有一條直線和已知直線垂直
6 直線外一點與直線上各點連接的所有線段中,垂線段最短
7 平行公理 經過直線外一點,有且只有一條直線與這條直線平行
8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9 同位角相等,兩直線平行
10 內錯角相等,兩直線平行
11 同旁內角互補,兩直線平行
12兩直線平行,同位角相等
13 兩直線平行,內錯角相等
14 兩直線平行,同旁內角互補
15 定理 三角形兩邊的和大於第三邊
16 推論 三角形兩邊的差小於第三邊
17 三角形內角和定理 三角形三個內角的和等於180°
18 推論1 直角三角形的兩個銳角互余
19 推論2 三角形的一個外角等於和它不相鄰的兩個內角的和
20 推論3 三角形的一個外角大於任何一個和它不相鄰的內角
21 全等三角形的對應邊、對應角相等
22邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等
23 角邊角公理( ASA)有兩角和它們的夾邊對應相等的兩個三角形全等
24 推論(AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等
25 邊邊邊公理(SSS) 有三邊對應相等的兩個三角形全等
26 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個直角三角形全等
27 定理1 在角的平分線上的點到這個角的兩邊的距離相等
28 定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上
29 角的平分線是到角的兩邊距離相等的所有點的集合
30 等腰三角形的性質定理 等腰三角形的兩個底角相等 (即等邊對等角)
31 推論1 等腰三角形頂角的平分線平分底邊並且垂直於底邊
32 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
33 推論3 等邊三角形的各角都相等,並且每一個角都等於60°
34 等腰三角形的判定定理 如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊)
35 推論1 三個角都相等的三角形是等邊三角形
36 推論 2 有一個角等於60°的等腰三角形是等邊三角形
37 在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半
38 直角三角形斜邊上的中線等於斜邊上的一半
39 定理 線段垂直平分線上的點和這條線段兩個端點的距離相等
40 逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
41 線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
42 定理1 關於某條直線對稱的兩個圖形是全等形
43 定理 2 如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線
44定理3 兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上
45逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱
46勾股定理 直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a^2+b^2=c^2
47勾股定理的逆定理 如果三角形的三邊長a、b、c有關系a^2+b^2=c^2 ,那麼這個三角形是直角三角形
48定理 四邊形的內角和等於360°
49四邊形的外角和等於360°
50多邊形內角和定理 n邊形的內角的和等於(n-2)×180°
51推論 任意多邊的外角和等於360°
52平行四邊形性質定理1 平行四邊形的對角相等
53平行四邊形性質定理2 平行四邊形的對邊相等
54推論 夾在兩條平行線間的平行線段相等
55平行四邊形性質定理3 平行四邊形的對角線互相平分
56平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形
57平行四邊形判定定理2 兩組對邊分別相等的四邊形是平行四邊形
58平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形
59平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形
60矩形性質定理1 矩形的四個角都是直角
61矩形性質定理2 矩形的對角線相等
62矩形判定定理1 有三個角是直角的四邊形是矩形
63矩形判定定理2 對角線相等的平行四邊形是矩形
64菱形性質定理1 菱形的四條邊都相等
65菱形性質定理2 菱形的對角線互相垂直,並且每一條對角線平分一組對角
66菱形面積=對角線乘積的一半,即S=(a×b)÷2
67菱形判定定理1 四邊都相等的四邊形是菱形
68菱形判定定理2 對角線互相垂直的平行四邊形是菱形
69正方形性質定理1 正方形的四個角都是直角,四條邊都相等
70正方形性質定理2正方形的兩條對角線相等,並且互相垂直平分,每條對角線平分一組對角
71定理1 關於中心對稱的兩個圖形是全等的
72定理2 關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被對稱中心平分
73逆定理 如果兩個圖形的對應點連線都經過某一點,並且被這一
點平分,那麼這兩個圖形關於這一點對稱
74等腰梯形性質定理 等腰梯形在同一底上的兩個角相等
75等腰梯形的兩條對角線相等
76等腰梯形判定定理 在同一底上的兩個角相等的梯形是等腰梯形
77對角線相等的梯形是等腰梯形
78平行線等分線段定理 如果一組平行線在一條直線上截得的線段
相等,那麼在其他直線上截得的線段也相等
79 推論1 經過梯形一腰的中點與底平行的直線,必平分另一腰
80 推論2 經過三角形一邊的中點與另一邊平行的直線,必平分第
三邊